408 research outputs found

    Metric Dimension for Gabriel Unit Disk Graphs is NP-Complete

    Full text link
    We show that finding a minimal number of landmark nodes for a unique virtual addressing by hop-distances in wireless ad-hoc sensor networks is NP-complete even if the networks are unit disk graphs that contain only Gabriel edges. This problem is equivalent to Metric Dimension for Gabriel unit disk graphs. The Gabriel edges of a unit disc graph induce a planar O(\sqrt{n}) distance and an optimal energy spanner. This is one of the most interesting restrictions of Metric Dimension in the context of wireless multi-hop networks.Comment: A brief announcement of this result has been published in the proceedings of ALGOSENSORS 201

    L-Visibility Drawings of IC-planar Graphs

    Full text link
    An IC-plane graph is a topological graph where every edge is crossed at most once and no two crossed edges share a vertex. We show that every IC-plane graph has a visibility drawing where every vertex is an L-shape, and every edge is either a horizontal or vertical segment. As a byproduct of our drawing technique, we prove that an IC-plane graph has a RAC drawing in quadratic area with at most two bends per edge

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    A Fully Dynamic Planar Point Location Technique

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / ECS 84-1090

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≤19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Bar 1-Visibility Drawings of 1-Planar Graphs

    Full text link
    A bar 1-visibility drawing of a graph GG is a drawing of GG where each vertex is drawn as a horizontal line segment called a bar, each edge is drawn as a vertical line segment where the vertical line segment representing an edge must connect the horizontal line segments representing the end vertices and a vertical line segment corresponding to an edge intersects at most one bar which is not an end point of the edge. A graph GG is bar 1-visible if GG has a bar 1-visibility drawing. A graph GG is 1-planar if GG has a drawing in a 2-dimensional plane such that an edge crosses at most one other edge. In this paper we give linear-time algorithms to find bar 1-visibility drawings of diagonal grid graphs and maximal outer 1-planar graphs. We also show that recursive quadrangle 1-planar graphs and pseudo double wheel 1-planar graphs are bar 1-visible graphs.Comment: 15 pages, 9 figure

    A flow approach to upward drawings of toroidal maps

    Full text link

    Field Representations of Vector Supersymmetry

    Full text link
    We study some field representations of vector supersymmetry with superspin Y=0 and Y=1/2 and nonvanishing central charges. For Y=0, we present two multiplets composed of four spinor fields, two even and two odd, and we provide a free action for them. The main differences between these two multiplets are the way the central charge operators act and the compatibility with the Majorana reality condition on the spinors. One of the two is related to a previously studied spinning particle model. For Y=1/2, we present a multiplet composed of one even scalar, one odd vector and one even selfdual two-form, which is a truncation of a known representation of the tensor supersymmetry algebra in Euclidean spacetime. We discuss its rotation to Minkowski spacetime and provide a set of dynamical equations for it, which are however not derived from a Lagrangian. We develop a superspace formalism for vector supersymmetry with central charges and we derive our multiplets by superspace techniques. Finally, we discuss some representations with vanishing central charges.Comment: 37 page

    Edge Partitions of Optimal 22-plane and 33-plane Graphs

    Full text link
    A topological graph is a graph drawn in the plane. A topological graph is kk-plane, k>0k>0, if each edge is crossed at most kk times. We study the problem of partitioning the edges of a kk-plane graph such that each partite set forms a graph with a simpler structure. While this problem has been studied for k=1k=1, we focus on optimal 22-plane and 33-plane graphs, which are 22-plane and 33-plane graphs with maximum density. We prove the following results. (i) It is not possible to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a forest, while (ii) an edge partition formed by a 11-plane graph and two plane forests always exists and can be computed in linear time. (iii) We describe efficient algorithms to partition the edges of a simple optimal 22-plane graph into a 11-plane graph and a plane graph with maximum vertex degree 1212, or with maximum vertex degree 88 if the optimal 22-plane graph is such that its crossing-free edges form a graph with no separating triangles. (iv) We exhibit an infinite family of simple optimal 22-plane graphs such that in any edge partition composed of a 11-plane graph and a plane graph, the plane graph has maximum vertex degree at least 66 and the 11-plane graph has maximum vertex degree at least 1212. (v) We show that every optimal 33-plane graph whose crossing-free edges form a biconnected graph can be decomposed, in linear time, into a 22-plane graph and two plane forests
    • …
    corecore